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Backflow correlations for the electron gas and metallic hydrogen
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We justify and evaluate backflow three-body wave functions for a two-component system of electrons and
protons. Based on the generalized Feynman-Kacs formula, many-body perturbation theory, and band structure
calculations, we analyze the use and the analytical form of the backflow function from different points of view.
The resulting wave functions are used in variational and diffusion Monte Carlo calculations of the electron gas
and of solid and liquid metallic hydrogen. For the electron gas, the purely analytic backflow and three-body
form gives lower energies than those of previous calculations. For bcc hydrogen, analytical and optimized
backflow-three-body wave functions lead to energies nearly as low as those from using local density approxi-
mation orbitals in the trial wave function. However, compared to wave functions constructed from density
functional solutions, backflow wave functions have the advantage of only few parameters to estimate, the
ability to include easily and accurately electron-electron correlations, and that they can be directly generalized
from the crystal to a disordered liquid of protons.
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I. INTRODUCTION

This paper concerns the form of the ground state w
function of metallic hydrogen at high enough density so t
all the hydrogen molecules are dissociated and the elect
are delocalized. Neglecting possible quantum effects on
protonic motion, the many-body wave function can be
garded as the ground state of an electron gas under th
fluence of an external potential due to the actual position
the protons. Quantum Monte Carlo~QMC! techniques are
currently one of the most powerful methods to calculate
curately the properties of such a many-body quantum sys
@1#. However, since ground state QMC is based on trial w
functions, QMC typically demands compactandaccurate de-
scriptions of the ground state wave function. In this paper
review different approaches to obtain and improve trial wa
functions, compare the qualities of the resulting many-bo
wave functions with previous QMC calculations for the ele
tron gas and metallic crystal hydrogen, and present res
using these wave functions for liquid metallic hydrogen.

Most of the work within QMC has been done using
pair-product~PP! @or Slater-Jastrow~SJ!# wave function: a
Slater determinant of single electron spin orbits times a pr
uct of pair electron~Jastrow! factors. Notwithstanding cer
tain deficiencies such as a lack of direct spin coupling, t
wave function has proven to be quite accurate, in particu
within fixed-node diffusion Monte Carlo~DMC! @1#. The
first calculation on many-body hydrogen@2# used an even
simpler form of this wave function; the single electron orb
were taken to be free electron plane waves~PWs!. We refer
to this as the SJ-PW trial function. Later, Natoli@3,4# found
that determinants using these orbitals are inaccurate by
eV/atom within the fixed-node DMC calculations at the de
sity corresponding to the transition between molecular
metallic hydrogen (r s51.31). Hence, more accurate orbita
1063-651X/2003/68~4!/046707~15!/$20.00 68 0467
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computed from either local density functional~LDA ! or
Hartree-Fock~HF! calculations, are required. Because the
orbitals are calculated assuming fixed ionic positions, inc
sion of ionic motions, such as those from the zero-point m
tion of the ions in the crystal, is difficult.

Recently, there have been new attempts@5,6# to calculate
properties of disordered systems such as liquid hydro
within QMC. In the coupled electron ion Monte Carlo~CE-
IMC! method@5# the protons are moved based on the resu
of a QMC calculation of the electronic energy. This approa
requires accurate trial functions that can be obtained quic
as the ionic positions are changed; methods involving
solution of mean field equations such as LDA and HF,
even optimizing a parametrized trial function, can grea
slow down the overall performance of the CEIMC simul
tion @5#. Further, combining the orbitals obtained from LD
or HF with a pair correlation~Jastrow! factor to improve the
accuracy is not straightforward; substantial modification
the orbitals might be necessary requiring a reoptimization
the orbitals and the correlation factors@7#, in principle, at
each new ionic position. This optimization step creates
bottleneck to coupling the QMC calculations with the ion
Monte Carlo.

One could consider obtaining the trial wave function fro
other variational approaches such as Fermi-hyperne
chain or correlated basis function methods@8# which would
not have the problems of optimization. However, in the
approaches based on explicit integration, one is in gen
limited in the form of the trial function by the ease perform
ing the integration, and these are typically much more ti
consuming than LDA calculations.

One of the biggest advantages of the QMC approach
that one can use an arbitrary wave function without chang
the algorithm in an essential way. Fast algorithms will res
if one can find concise and accurate forms. In this pap
©2003 The American Physical Society07-1
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HOLZMANN et al. PHYSICAL REVIEW E 68, 046707 ~2003!
instead of using one-body orbitals from mean field theory
integral equations, we propose to use trial functions wh
depend explicitly and continuously on the ionic variable
Such wave functions do not have to be reoptimized
movements of the ions, are easy to implement, and accu
for disordered systems. These trial functions are a gene
zation of the backflow three-body wave functions used v
successfully in highly correlated homogeneous quantum
uids: liquid 3He and the electron gas@10#. There, backflow
trial functions show much improvement over the pair pro
uct getting'75% of the energy missing at the PP level a
much more when done with the fixed-node method.

Backflow wave functions were developed by Feynm
and Cohen@9# for a single3He impurity in liquid 4He when
it was recognized that without backflow, the mass of
impurity was equal to the bare mass. Pandharipande and
@11# showed that the backflow arises from the moment
dependence of the correlation between the impurity and
liquid. The backflow wave function was then extended
bulk liquid 3He @12,13# using an integral equation method
evaluate expectation values. The first use of backflow
QMC was by Leeet al. @14# and others@15,16# with calcu-
lations on liquid 3He. Moroni et al. @17# further optimized
the trial function within liquid3He. Kwonet al. @18,10# used
backflow functions for the electron gas in both two and th
dimensions, obtaining significantly lower energies and i
proved excitation energies. Vitielloet al. @19# discuss an
equivalence of backflow and spin-dependent correlations
aspect we will not further consider in this paper.

Using different approaches, we generalize the backfl
three-body wave function to a two- component system
electrons and protons and derive approximate expression
the correlated trial function. We first present an argum
based on the generalized Feynman-Kacs formula wh
shows that backflow is the next order improvement beyo
the PP wave function. Using perturbation theory, we th
discuss general features of the backflow functions and ob
explicit expressions for the homogeneous electron gas
for the electron-proton plasma. A similar analysis using
Bohm-Pines method has been recently performed
Gaudoin et al. @20#, however, without going beyond th
Slater-Jastrow wave function. Studying the problem o
single electron in the potential generated by a simple cu
lattice of protons, we show that the exact one-electron w
function can be approximately rewritten by a backflow fun
tion. Finally, we optimize numerically simple functiona
forms for the backflow functions in the full many-body pro
lem by variational Monte Carlo. We compare the quality
the wave functions stemming from these different a
proaches for the electron gas and for liquid and crystal
drogen at the level of variational and diffusion Monte Car

In the following we consider the nonrelativistic Hami
tonian ofN protons andN electrons:

Ĥ52(
i

l i¹ i
21(

i , j

eiej

r i j
, ~1!

where l i5\2/(2mi), i 51, . . . ,2N, and mi and ei are the
electron or proton mass and charge. The Fermi wave ve
04670
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or

is kF . Numerical results are given in atomic units whe
le51/2 andlp50 for classical protons,uei u5mi51. The
electron densityn5N/V is quoted in termsr s5a/a0, where
a5(4pn/3)21/3 anda05\2/mee

2 is the Bohr radius. Ener-
gies of the QMC calculations are given in Rydbergs per el
tron.

II. THE FEYNMAN-KACS APPROACH TO IMPROVING
THE WAVE FUNCTION

The Feynman-Kacs formula expresses the exact w
function in terms of average over Brownian paths. We n
review how it can be generalized to random walks w
‘‘drift.’’

We define the ‘‘importance-sampled’’ Green’s function
Ĝt5cexp(2tĤ)c21 in operator notation wherec is an un-
symmetrical trial function.Ĝt acting on a function has the
effect of enhancing the component of lower energy sta
Then the lowest energy~exact! Fermi wave functionfF(R)
is given by

fF~R!}Âc~R! lim
t→`

E dR8^R8uĜtuR& ~2!

assuming only that the trial function has a nonzero over
with fF and thatfF is nondegenerate. HereÂ is a projection
operator for fermion symmetry defined as

Âf ~R!5
1

N! (
P

~21!Pf ~PR! ~3!

and R5$r1 ,r2 , . . . % is a point in configuration space. Th
electron spin is treated by restricting the permutation in E
~3! to be exclusively within spin up or spin down electron

Following the derivation in diffusion Monte Carlo@21#,
the Green’s function can be split into diffusion, drift, an
branching processes. To show this, the master equation
Green’s function is written as

2
dĜt

dt
5cĤc21Ĝt5F2(

i
l i¹i~¹i12¹i ln c!1E~R!GĜt .

~4!

The local energyE, defined asE(R)5c21Ĥc2E0, is the
residual error of the trial function, withE0 the ground state
energy. It becomes zero function asc approaches an exac
eigenvalue. Trotter’s formula applies to the above mas
equation, allowing us to split up the evolution into the fir
two terms describing a stochastic process, and the final t
which is a branching or ‘‘weighting’’ process. Thus we ha
the generalized Feynman-Kacs formula~GFK!:

fF~R!}Ac~R!K expF2E
0

`

dtE„R~ t !…G L ~5!

where the brackets imply averaging over all drifting rando
walks R(t) beginning at a pointR. The above relation is
exact for any real trial function. For trial functions having a
7-2
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BACKFLOW CORRELATIONS FOR THE ELECTRON GAS . . . PHYSICAL REVIEW E 68, 046707 ~2003!
imaginary component of“ ln c, the formalism goes through
however, Green’s function is no longer real and positive a
therefore cannot be treated as a probability.~Note that we do
not imply that real trial functions are needed in QMC.! To
simplify the discussion of the derivation of the GFK formul
we will assume the drift term is real. Later in this section,
will comment on the conditions under which this assumpt
is unnecessary.

To make further analytical progress, we take the aver
into the exponent. For any stochastic process, one can w
the average of the exponent as the exponential of the cu
lant expansion, the first two terms of which are

fF~R!}Ac~R!exp@2Š^E&‹1~1/2!Š^dE2&‹•••#. ~6!

The double brackets are defined asŠ^E&‹5^*0
`dtE(R(t))&

with walksR(t) generated from the drift and diffusion star
ing at a pointR. We truncate the cumulant expansion af
the first term. We then have an approximate method of
proving the trial function:

c (n11)5c (n)e2Š^E(n)&‹n ~7!

with the subscript indicating that the drift is given b
“ ln c(n). If we split the log of the trial function into its rea
and imaginary partsc (n)5exp(2M(n)1iS(n)) with M (n) and
S(n) real, we are led to the following equations for a sing
iteration:

M (n11)5M (n)1K K V1(
i

l i@¹ i
2M (n)2~“ iM

(n)!2

1~“ iS
(n)!2#L L

n

, ~8!

S(n11)5S(n)1K K (
i

l i@¹ i
2S(n)22“ iM

(n)
“ iS

(n)#L L
n

.

~9!

HereV(R) is the total potential energy.
Specializing to the case of a Fermi liquid, we take as

initial wave functionM (0)50 andS(0)5( ik i•r i , i.e., singly
occupied free particle states.~The usual spin functions ar
assumed but not explicitly written.! Note that this function is
an unsymmetrical trial function, with a nonzero overlap w
a fermion state as long as all thek i ’s are distinct. When the
wave function is antisymmetrized, one gets a determinan
plane waves. However, the antisymmetrization will be do
only once,after the trial function has gone through sever
iterations of Eq.~7!. This may simplify the procedure, sinc
the local energy of the unsymmetric trial function is mu
simpler than that of an antisymmetric trial function. No
that in Eq.~5! both the antisymmetrization and the averagi
are linear operators and so can be interchanged.

After the first iteration, the wave function will have th
form:

M (1)5Š^V~R!&‹0[U~R!, ~10!
04670
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S(1)5S(0). ~11!

In the above equation and the following discussion we dr
without mention, constant normalization terms. IfV(R)
5( i , jv(r i j ) is a pair potential, with a Fourier transformvk ,
the averaging can be carried out analytically with a res
thatM (1) will also be a pair potential and will have a Fourie
transform given byvk /(lk2) wherel5l i1l j . For a Cou-
lomb potential the real-space correlation~Jastrow! function
will then have the formuC(r )52e2r /2l.

Hence, the form of the first-order wave function is of th
SJ-PW or Slater-Jastrow form, with free particle orbitals.
the remainder of the paper, the pair term will be denoted
U with U5( i , ju(r i j ). Typically the form ofu is derived
from a variational principle, chosen such that either the to
energy or variance is minimized. This will, of course, give
lower energy than the cumulant form derived above. T
above derivation does give the correct cusp condition~the
limit of u at largek or smallr ). However, it does not give the
long-wavelength limit correctly because of the neglect of
higher cumulants. Gaskell@22# proposed an analytic form
based on the random phase approximation~RPA! without
any parameters. It was found@23# for the homogeneous elec
tron gas that the RPA form does, as well as, or better t
simple assumed forms with parameters. Figure 1 show
comparison of these correlation functions.

Note that the cumulant approximation will not exist if th
Fourier transform of the potential does not exist. Two e
amples of such potentials are the hard sphere and Lenn
Jones interactions. However, for the short-range part of a
potential which does have a Fourier transform such as
Yukawa potential, the cumulant approximation works qu
well ~see remarks concerning the situation at finite tempe
ture in Ref.@24#!.

We now perform the next iteration of this procedure.
minimize the fluctuations in the local energy so that the

FIG. 1. ~Color online! The electron-proton Jastrow factoruG
ep vs

(a0G)22 from band calculations of solid cubic hydrogen atr s

51.31 ~squares!, Eq. ~53!. The rightmost square is the first recip
rocal lattice vector. This is compared with the RPA~Gaskell! form
~solid line! Eq. ~A1! and cumulant form~dotted line! 1/G4 and the
improved analytic form@Eq. ~A13!# ~dashed line!.
7-3
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HOLZMANN et al. PHYSICAL REVIEW E 68, 046707 ~2003!
mulant approximation will be more accurate, we assume
the first-order wave function has been optimized but it s
has a pair-product form. Using Eqs.~8! and ~9!, neglecting
constants, and combining pair terms together, we get in
ond order a function of the form

M (2)5Ũ~R!2K K (
i

l i@“ iU~R!#2L L
1

~12!

and

S(2)5K K (
i

k i•~r i22l i¹iU !L L
1

. ~13!

Here Ũ includes additional pair terms not contained inU.
At second order, we cannot perform the averaging ana

cally, since it involves drift under the influence of the firs
order wave function:M (1). We make the assumption that th
averaging will not change the functional form of the quant
being averaged but only smoothes out the individual fu
tions. That is, our ansatz for the iterated wave function is

M (2)5U~R!2(
i

~“ iW!2 ~14!

and

S(2)5(
i

k i•~r i2“ iY!, ~15!

whereU, W, andY are three different pair ‘‘potentials’’ to be
optimized. In the following, we have adopted the convent
that pair functions have the same sign asv i j (r ), so that, for
example, a repulsivev leads to a repulsivew andy.

The two new functions appearing at second order are
backflow functionY and the three-body or polarization ter
W. The backflow potential is

Y5(
i , j

y~r i j !, ~16!

wherey(r ) is a spherically symmetric function and the su
extends over all pairs of particles, including both electro
and protons. The backflow displacement is defined as
gradient of the backflow potential with respect to a parti
coordinate:

Dr i52“ iY5(
j Þ i

h~r i j !~r i2r j ! ~17!

where

h~r !52
1

r

dy~r !

dr
~18!

corresponds to the definition in previous work for homog
neous systems@18,10#.

With this ansatz, the antisymmetized trial function is
determinant composed of ‘‘quasiparticle’’ coordinates:
04670
at
l

c-

i-

-

n

e

s
e

-

cF
(2)5det@expik j•~r i1Dr i !#e

2U(R)1(“W)2
. ~19!

Recall that in the fixed-node or fixed-phase diffusion Mon
Carlo method, one obtains the exact energy subject to
imposed constraint@1,25#. The assumed node or phase lim
the ultimate accuracy for fermion systems. Since the corr
tion to the real part, the three-body term, is already symm
ric, it is the backflow which is responsible for the change
node or phase of the trial function and is, in that sense, m
important than the Jastrow and polarization part.

In the above derivation we have neglected any effects
complex drift velocity. However, as already shown by Or
and Ceperley@26#, a complex drift velocity does not affec
the corrections to the wave function to the order we ha
considered; Eqs.~8! and ~9! are valid to improve the wave
function.

Now we consider how to treat possible long-range p
functions. In periodic boundaries~or ‘‘supercells’’! we need
to perform Ewald summations of the functionsV,U,W,Y.
This is most convenient in Fourier space. We define the F
rier transform of a radial function as

ỹk5E dr3e2 ik•ry~r !. ~20!

Using the Poisson sum formula, the ‘‘potential’’ of thei th
particle in periodic boundary conditions is

yi5
1

V (
k, j

ỹke
ik•(r i2r j ), ~21!

whereV is the volume of the supercell. For example, to fi
the backflow displacement, Eq.~17!, we simply take the gra-
dient of the pair function:

Dr i52
1

V (
k, j

ikỹke
ik•(r i2r j ), ~22!

wherek ranges over the reciprocal lattice vectors of the
percell.

The three-body potentialW is defined analogously in
terms of a pair polarizationw(r ). This function is related to
that used in previous QMC work@16–18,10# by

AulTuj~r !5
1

r

dw~r !

dr
. ~23!

The overall sign ofw is not important because only its squa
appears in the trial function, but the relative sign of t
electron-electron to the electron-proton interaction is sign
cant.

One of the simple ways of deriving conditions on th
backflow function is to look at the action of the Hamiltonia
on the wave function, the local energy, and to minimize
fluctuations of the local energy. Here we focus on the ima
nary part of the local energy and consider a single elect
with phaseS5q•(r2“Y). Setting to zero the imaginary
part of the local energy we obtain

“¹2y~r !12“u~r !22“u~r !““y~r !50. ~24!
7-4
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Neglecting the last term, since it is higher order in the int
action, we obtain¹2y(r )522u(r ). We have set the inte
gration constant to zero in order to avoid a singular con
bution proportional tor 21 at the origin which would give
rise to large fluctuations of the local energy. The solution
Fourier space isyk52uk /k2. Therefore,y(r ) is smoother
thanu(r ) at r 50. We get the same smoothing (k22) that we
observed at first order for the pair function. Shown in Fig
are theu(r ) andh(r ) functions coming from this approach
Note that this approach is based on a single-electron des
tion and therefore does not correctly describe the lo
wavelength~large r ) behavior where the collective motio
dominates.

To obtain a simple form for the three-body potential, w
note that the averages used in the definition ofY are similar
to those forW, see Eqs.~12!–~15!. Hence an estimate of th
polarization potential is

W52AlkFY, ~25!

where we have approximatedŠ^(“ iU)2&‹'(^“ iU&)2/t, av-
eraged over a ‘‘typical’’ timet'(lkF

2)21. This relates the
three-body contribution to the backflow potential.

The generalized Feynman-Kacs approach is good for s
gesting corrections, but there are serious problems in usin
to find a good backflow function since the averaging is d
ficult to carry out, the linear cumulant approximation may
inadequate, and the long-time effects of the imaginary d
are being ignored. If one cannot analytically perform t
averaging, one does not know by what time to multiply t
local energy to get a wave function, nor the relative corr
tions at large versus small distances. We now discuss se
other approaches which allow us to directly evaluate the
strow, three-body, and backflow functions and give more
sight into their form.

FIG. 2. Theuep(r ) using the RPA~Gaskell! form ~dotted line!
andh(r ) ~solid line! from smoothing it withk22 for the ep corre-
lation at r s51.31, both computed for an infinite system. Note th
in this approximation they both tend to the same limit at larger.
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III. PERTURBATION THEORY ÕANALYTIC METHODS

In this section we follow another approach to obtaini
improved estimates of the many-body wave function. Man
body perturbation theory is a well studied approach to und
standing the effects of weak correlation. Encouraged by
use of the RPA@22# which gave an excellent analytic two
body correlation function, we will extend this wave functio
by perturbative expressions for the Jastrow, backflow,
three-body potentials for the electron gas and for meta
hydrogen. Rather than performing a systematic low or h
density expansion to derive analytical expressions for
variational wave function of the electron gas or metallic h
drogen, we concentrate on improving this correlation fac
The collective coordinate formulation of Bohm and Pin
@20,27# allows us to use Slater-Jastrow wave functions
zeroth-order starting point. We obtain improved potenti
for the homogeneous electron gas and metallic hydrog
which compare very well with numerically optimized form

Even if perturbation theory assumes a weak coupling~or
high density! expansion, we expect the derived properties
be qualitatively valid as long as the corresponding pertur
tion expansion remains regular, e.g., until there is a ph
transition to an insulating phase.

A. Single-particle perturbation theory

Consider a single electron interacting with an arbitra
external potentialv(r ) with Fourier transformṽ(k). To
avoid the problems arising from the long-range behavior
the Coulomb interaction, we restrict the analysis to a pot
tial with a Fourier transform which is finite at the origin
uṽ(0)u,`, e.g., a screened Coulomb potential. We use
continuum notation in this section@(1/V)(k↔*d3k/(2p)3#.
The solution of the Schro¨dinger equationfk(r ) of a particle
with wave vectork,

fk~r !5
1

~2p!3E d3p ck~p!exp@ ip•r #, ~26!

can be written as

ck~p!5~2p!3d~k2p!1
4p f ~k,p!

k22p21 id
, ~27!

where the off-shell scattering amplitudesf (k,p) are given by
the integral equation

4pl f ~k,p!5E d3k8

~2p!3
ṽ~p2k8!ck~k8!, ~28!

wherel5\2/2me for the single electron in an external po
tential or, more generally,l5l i1l j for a two-particle prob-
lem. Using the Born approximation we can write down t
wave function to first order inṽ,

t

7-5
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fk~r !.fk
(0)~r !1fk

(1)~r !

5eik•rS 12
1

lE d3p

~2p!3
eip•r

ṽ~p!

p•~p12k!D . ~29!

If we expand the solution aroundk50 and assume that th
change in the wave function is small, we can write it in t
pair-product and backflow form, Eq.~19!. We obtain for the
pair potential

u~r !.E d3p

~2p!3
eip•r

ṽ~p!

lp2
, ~30!

and for the backflow potential

y~r !.2E d3p

~2p!3
eip•r

ṽ~p!

lp4
. ~31!

Note that the smallp part of the integral is usually cut off by
the finite size of the box. In addition, it ish(r ), the deriva-
tive of y(r ) @see Eq.~18!# which enters in the trial function

Although the first-order approximation is only reliable
the case of a weak potential, it becomes correct in the h
momentum region and hence, gives the correct cusp co
tions. The derived form is identical to that obtained from t
Feynman-Kacs formula in the preceding section. For an
bitrary weak potential, we further get the long-range beh
ior, u} ṽ(0)/r andh}1/r 3 for r→`, provided the potentia
has a finite range@ ṽ(q)2 ṽ(0)}q2 for q→0] and there is no
other singularity in the integrand.

To find an approximate form for the three-body functi
W(r ) we must go to higher order in the interaction, but on
at k50. Using Eqs.~27! and ~28!, we can write down the
second-order corrections inṽ to the wave function,fk

(2) at
k50:

fk50
(2) ~r !5

1

l2E d3q

~2p!3

d3p

~2p!3

ṽ~q!eiq•r

~q1p!2

ṽ~p!eip•r

p2

~32!

'E d3q

~2p!3

d3p

~2p!3

ṽ~q!eiq•r

lq2

3S 12
2q•p

q2 D ṽ~p!eip•r

lp2
. ~33!

This is almost in the form of the three-body correlation o
tained with the GFK approach: (“w)2. Note, however, that
Eq. ~33! is unsymmetrical inq andp so that in r space it will
be written as (“wu)•(“wy) with wu(r ).u(r ) and wy(r )
.y(r ). Therefore the polarization term is not a square bu
product of the gradients of two different functions.„In the
second order one will also find a contribution}@u(r )#2 to
the pair term.…

The perturbative expressions~30! and ~31! are based on
the Born approximation for scattering between free sta
However, an attractive potential as the electron-proton~ef-
fective! interaction might also lead to bound states. To
clude the effects of a possible bound state we can use
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nonperturbative expression~28! for the scattering ampli-
tudes: given an approximate expression for the bound s
wave function of energyek52lk2, we can calculate the
scattering amplitudes and obtain corrections from the bo
state to the pair and backflow potential in the same way
shown above for the scattering states within the Born
proximation. In a similar way one should proceed to obta
approximations for the pair and backflow potentials for s
tems where the interatomic potentials cannot be trea
within the Born approximation, for example, potentia
dominated by a hard core.

Of course, in the case of a single electron in an exter
potential we can solve the Schro¨dinger equation by othe
means and obtain the ‘‘best’’ pair and backflow potenti
from the exact~numerical! solution. This is done below for a
perfect crystal using a band structure calculation. Howe
the simple perturbative approach above provides an e
way to get some intuition for the pair and backflow potenti
and is already good enough to determine their asympt
properties. These properties are expected to hold in
many-body case: the short-range properties are typically
termined by two-body collisions and the influence of t
remaining particles on the long-range properties is usu
well described by an effective single-particle potenti
Many-body perturbation theory, which we discuss next, le
to similar expressions.

B. Many-body perturbation theory

We now make an expansion of the exactN-particle wave
function uf& of the interacting system around the noninte
acting ~ground! state uf0&; the ground state without eithe
the electron-electron or the electron-proton interaction.
ak (ak

†) be the annihilation~creation! operator for an electron
of wave vectork. Expanding in particle-hole excitations, w
have

uf&}S 11 (
q,k1 ,k2

ak1 ,k2 ,qak22q
† ak2

ak11q
† ak1

1••• D uf0&.

~34!

The problem is reduced to determining the coefficie
ak1 ,k2 ,q . Just as in the single-particle case, a further exp

sion of ak1 ,k2 ,q around k150 or k250 together with an
exponentiation brings the wave function into the desir
functional form, thereby determining the pair and backflo
potentials. To avoid overcounting, we assume that the s
mation in Eq.~34! goes only over distinct states so that it
sufficient to antisymmetrize the wave function at the ve
end, once we have calculated the perturbative correcti
We have limited the expansion in Eq.~34! to the leading
order corrections, particle-hole excitations; the generali
tion to include higher-order excitations is straightforwar
but not necessary to calculate the pair and backflow term
the wave function.

In order to determine the coefficients, we wri
uFk1,k2,q&5ak22q

† ak2
ak11q

† ak1
uf0& and multiply these state

by a constant phase
7-6
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ak1,k2,q5^Fk1,k2,quf&}
^fuf0&^Fk1 ,k2 ,q

ee uf&

^fuf0&^f0uf&
. ~35!

Note that with this phase factor, the right hand side of E
~35! is given by the expectation value of an operator over
true ground state and the coefficients can therefore be i
tified as anN-particle Green’s function@28#. By considering
only particle-hole excitations in Eq.~34!, the N-particle
Green’s function reduces to a connected two-particle Gre
function and the lowest order modifications to the ideal g
ground state of the homogeneous electron gas are ther
related to the two-particle Green’s functionG(2) at equal
times @28# or equivalently

ak1,k2,q.
^fuak22q

† ak2
ak11q

† ak1
uf&

^fuf&
. ~36!

Summing up particle-hole bubble diagrams~corresponding
to the RPA! results in an effective interaction,ṽRPA(p,v),

ṽRPA~p,v!5
ṽ~p!

e~k,v!
, e~k,v!512 ṽ~p!D~p,v!,

~37!

whereD(p,v) is the Lindhard function. Perturbation theo
can now be arranged to be regular@29#. We note that Eq.~37!
already contains the correct short- and long-range limits
the effective interaction.

Neglecting for the moment any contributions from pla
mon excitations coming from the poles whe
e„kp ,vp(kp)…50, we get

ak1 ,k2 ,q5~12nk12q!nk1
~12nk21q!nk2

3
ṽRPA~q,«k1

2«k12q!1 ṽRPA~q,«k2
2«k21q!

2~«k1
1«k2

2«k12q2«k21q!
,

~38!

where nk are the occupation numbers of statek in lowest
order. Expanding aroundk15k250, we get the Jastrow an
the backflow potential. Including the plasmon excitatio
will give an important long-range contribution. However,
the simplest approximation, this contribution describes o
the long-wavelength limit correctly, and destroys the corr
short distance behavior. We will circumvent this problem
the following section using the formalism of collective coo
dinates.

As already shown in the preceding section, we expec
more general form for the three-body potential,

f}det@expik j•~r i1Dr i !#e
2U(R)1W ~39!

with

W5(
j

~“ jWu!~“ jWy!22(
i , j

@“ jwu~r i j !#@“ jwy~r i j !#,

~40!
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where

wu~r !.u~r !, wy~r !.y~r !. ~41!

For the interactions of the electrons with static protons,
can use the static dielectric functione(k,0) to obtain the
effective electron-proton interaction, and use directly the
sults of the single-particle perturbation theory of the prec
ing section with this screened potential.

The disadvantage of perturbation theory is that one g
correct behavior at long and short distances, but it does
provide a unique way to interpolate between these limits
Table I we summarize the asymptotic properties of the p
and backflow potentials for the three-dimensional~3D! elec-
tron gas.

C. The Bohm-Pines collective coordinate approach

Instead of replacing the established form for the Jastr
part proposed by Gaskell@22# by the direct use of Eq.~38!,
we prefer to improve the RPA form of Gaskell by extendi
it using perturbative formulas. This is most easily do
within the framework of the collective coordinate descripti
of Bohm and Pines using additional field variables@27#. In
this approach, the original Hamiltonian of electrons intera
ing with each other and with static protons is extended by
additional boson field with generalized momentum variab
Pk coupling to the electron and proton density fluctuation

H5(
i

lpi
21

1

2V (
k

ṽk~r2k
e rk

e2N!2
1

V (
k

ṽkr2k
e rk

p

1
1

V (
k

S Pk
†Pk

2
1MkPk

†rk
e1PkPk

†rk
pD , ~42!

whererk
e (rk

p) is the Fourier transform of the electron~pro-
ton! density,rk5( ie

2 ik•r i, and Mk and Pk are variational
parameters. By imposing the extra conditionsPkC50 on
the wave function, the ground state wave function of the n
extended Hamiltonian will be identical to the original on
For a detailed description of this approach we refer to
original literature@27#; we will only describe the main steps

Carrying out the following canonical transformation:

TABLE I. Asymptotic properties of the Jastrow and backflo
functions for the 3D electron gas.l5\2/2me , n is the electron
density,y2'0.055r s , andc(r s)'110.075Ar s/(110.8Ar s).

Function r→0 r→` k→0 k→`

v e2/r e2/r 4pe2/k2 4pe2/k2

u u02
e2r

4l
A e2

8pnl

1

r
A vk

2nlk2

vk

2lk2

y y02y2r 21
e2

48l
r 3

c~rs!

4pnr

c~rs!

nk2

vk

2lk4

h 2y22
e2

16l
r

c~r s!

4pnr3
7-7
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fold5exp@ iS/\#fnew, S5
1

V (
k

~Mkrk
e1Pkrk

p!Qk ,

~43!

whereQk represents the field coordinate conjugate toPk ,
we obtain an equivalent Hamiltonian

H5(
i

lepi
21

1

V (
k

S Pk
†Pk

2
1lenk2Mk

2Qk
†QkD

1Hsr
ee1Hint1Hrw1Hsr

ep , ~44!

where

Hsr
ee5

1

2V (
k

~ ṽk2Mk
2!~r2k

e rk
e2N!, ~45!

Hint5 i
1

V (
k, j

S k•pj

m
1

\k2

2m D MkQke
2 ik•r j , ~46!

Hrw5
l

V2 (
kÞk8, j

Qk
†Qk8MkMk8k•k8ei (k2k8)•r j , ~47!

Hsr
ep52

1

V (
k

~ ṽk2MkPk!r2k
e rk

p. ~48!

Now the ground state of the additional field in the zero
order Hamiltonian, Eq.~44!, is simply given by harmonic
oscillator ground states of frequenciesVk5(nk2Mk

2/m)1/2,

fnew
0 5det†exp@ ik i•r j #‡expF2

1

V (
k

Pk
†Pk

2\Vk
G . ~49!

Transforming back and applying the subsidiary conditio
replaces the field operatorPk by Mkrk

e1Pkrk
p and the zeroth

order wave function is in the Slater-Jastrow form

fold
0 5det†exp@ ik i•r j #‡

3expF2
1

V (
k

Mk
2r2k

e rk
e12MkPkr2k

e rk
p

2\Vk
G ~50!

up to a constant factor. Instead of usingMk5( ṽk)
1/2u(kc

2k) for the long-wavelength part up tokc , and optimizing
the cutoff kc , as done in the original work of Bohm an
Pines, we can useũk

ee and ũk
ep for the electron-electron~ee!

and electron-proton~ep! Jastrow part taken in the RPA@2#
and relate these functions toMk and Pk . The resulting re-
sidual electron-electron and electron-proton interaction
screened, sinceMk

2→ ṽk and MkPk→ ṽk in the long-
wavelength limitk→0.

A second unitary transformation using

S5
1

V (
k, j

Mk

k•pj

mvp~k!@\vp~0!1ek#
Pk

†e2 ik•r j ~51!
04670
s
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eliminatesHint to first order. Here,vp(k) is the plasmon
frequency at wave vectork. Note that this transformation
brings the wave function into the backflow form. Furthe
more, we treat the remaining terms of the Hamiltonian p
turbatively as shown in the preceding section.

The detailed functions we used for the electron gas
for metallic hydrogen are given in the Appendix and t
numerical tests are given in Sec. V.

IV. COMPARISON WITH THE BAND STRUCTURE
WAVE FUNCTION

In this section, we consider another approach of gene
ing backflow functions. As in the discussion of the sing
particle perturbation theory in the last section, we conside
perfect lattice of protons in which a single electron moves
is straightforward to expand the wave function in pla
waves and obtain a precise numerical solution of the
electron problem by diagonalization of the Hamiltonian m
trix. We study to what extent we can recast the ‘‘band str
ture’’ wave function into a backflow form. The advantage
this approach is that we are evaluating the entire nonlin
effect of a lattice of protons on the electron wave function,
orbital, which for a perfect lattice is a Bloch wave. Howeve
effects of electron correlation or screening are absent for
model.

As was done in Eq.~26!, the exact one-electron wav
function is expanded in plane waves:

fk~r !5(
G

ck,Gei (G1k)•r, ~52!

where G is a reciprocal vector of the lattice andk is the
crystal momentum. We then obtain numerical values forck,G
by conventional diagonalization of the Hamiltonian in th
basis.

First, we study the wave function atk50 to determine the
pair part of the wave function,U. Neglecting the three-body
term we have

(
i

u~ ur2zi u!52 ln@f0~r !#, ~53!

wherezi are the proton positions. Then by Fourier transfor
ing and assuming a Bravais lattice,

uG52E
V
d3re2 iG•r ln@f0~r !#. ~54!

This is shown in Fig. 1 and compared to the RPA form~solid
line! and cumulant form. Note that we only obtain inform
tion aboutuk at values ofk on the reciprocal lattice. It is
seen that except for the first few reciprocal lattice vecto
the pair wave function is determined by the cusp behav
The noncusp behavior is due to the neglect of higher-or
terms in the cumulant expansion. Some effects are picked
by the three-body term of the wave function. We note th
even for the largest lattice vector, the values seem to fol
a smooth curve, independent of the lattice directions. T
7-8
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BACKFLOW CORRELATIONS FOR THE ELECTRON GAS . . . PHYSICAL REVIEW E 68, 046707 ~2003!
k50 component, though important, will not affect the man
body nodal structure or the correlation effects near the Fe
surface.

Now, let us use the same procedure to estimate the b
flow function. First, we divide out the wave function atk
50 and define backflow functions for differentk vectors,
Yk(r ),

k•“Yk~r !5k•r1 i ln@fk /f0#. ~55!

Assuming Yk(r ) is the sum of contributions of proton
electron terms on a Bravais lattice we get

k•“Yk~r !5
1

V (
G

iG•kYk,GeiG•r. ~56!

Setting these two expressions equal and taking the Fou
transform we arrive at

Yk,G5
2 i

k•GE dre2 iG•r ln@fk~r !/f0~r !#. ~57!

In general, the functionYk,G depends on bothk andG. For
small values of k, the ratio approaches a limit,yq
5 limk→0Yk,q , independent of both the magnitude and dire
tion of k. As with the pair term, we can only determineyq at
reciprocal lattice vectorsq, extrapolated fromk in the first
Brillouin zone. Shown in Fig. 3 isYk,q for several values of
k evaluated for a simple cubic lattice plotted versusq. How
well the values fall on a smooth curve independent ofk is a
test of the extent to which the band structure orbitals can
cast into the form of a backflow function. Note that only f
the smallest values ofq is the backflow function appreciabl

FIG. 3. ~Color online! The backflow function yq vs the
wavevectorq in atomic units for solid cubic hydrogen lattice atr s

51.31. The solid line is the cumulant approximation:yq5
216p/q6. The dashed line is the backflow function optimized f
an interactingN-body hydrogen with a Gaussian form. The dott
line is from many-body perturbation theory, Eq.~A11!, derived in
the Appendix. The solid symbols areYk,q with fk determined with
a band theory calculation. All values ofq on the reciprocal lattice
are plotted and four different values ofk are used having magni
tudes 0.01<k<0.05 and with four different directions.
04670
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~because the logarithm ofy is shown!. At intermediate values
of q one does observe some ‘‘nonbackflow’’ behavior, ho
ever, it is not clear how important these effects are. At la
q, we see the ‘‘cumulant behavior’’yq.8pe2/lq6, shown
as the solid line, as expected from the results of Secs. II
III.

In Fig. 4 is shown the error in the band energies with
backflow ~BF! wave function and the results for having n
backflow effects. For the comparison we used a BF funct
yq5y0exp(2bq) fitted to the lowq behavior. Sinceyq drops
off rapidly with respect toq, it is primarily the effects at
small k that are important to describe@30#. By definition the
energies are identical atk50 and the curvature aroundk
50 is exactly put in by the backflow ansatz, at least assu
ing cubic symmetry. We see that the errors in the band
ergy go ask4 instead ofk2 for the nonbackflow trial func-
tion. However, near the band edge there are serious prob
because our assumed form does not have mixing of
bands required by lattice periodicity. We expect such an
fect to be much reduced for a disordered system since s
degeneracies will not occur.

This achieves our goal or showing that the dominant ba
structure effects can be interpreted as backflow correctio
particularly at smallk. This implies that the changes in th
nodal surfaces due to an external potential of protons
well approximated by backflow functions.

The backflow form is a much more succinct description
the single-body wave function than the expansion in pla
waves. In the Introduction, we emphasized that this impro
performance because we no longer have to perform the b
structure calculation. However, there is also an improvem
in speed of calculation of the orbitals using backflow. T
expansion in plane waves can be quite slow, since the a
racy versus number of terms decreases quite slowly. In
vious work on metallic hydrogen@3#, we divided the band

FIG. 4. The error in the band energy of a single electron in a
proton lattice forr s51.31 as a function ofk ~in the 100 direction!
using plane waves~dashed line! and using a BF function~solid
line!. Both approximations are exact at theG point since a trial
function exact atk was used, but for the BF trial function, the erro
}k4 while in the PW case~zero backflow! the error is}k2.
7-9
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HOLZMANN et al. PHYSICAL REVIEW E 68, 046707 ~2003!
structure orbital by an electron-proton Jastrow factor as
approximation tof0(r ), and then reexpanded in plan
waves. The resulting expansion is much more quickly c
vergent in the number of plane waves since the cusp atr ep
50 is in the Jastrow factor. It takes the sum of many pla
waves to recover this nonanalytic behavior atr i5zj . Back-
flow takes this even further by using the fact that neak
50 the wave function can be expanded in pair terms wit
higher-order cusp. These pair terms can be conveniently
rapidly computed, since much of the computational effor
to map each pair of particles~ee or ep! onto a grid value for
a table lookup. The distances and grid values are then u
for all of the pair terms: the potential, the Jastrow, the ba
flow, and the polarization terms.

The problems concerning degeneracies of the unpertu
plane wave functions near the edge of the Brillouin zone
common to all analytical approaches considered up to n
Without a separate treatment of~nearly! degenerate zeroth
order~plane wave! states, neither the cumulant method~Sec.
II ! nor perturbation theory~Sec. III! is able to produce the
resulting energy splitting at the band edge. A degenerate
will have to be treated by including all of the degenera
states in the unperturbed basis.

V. QUANTUM MONTE CARLO TESTING OF TRIAL
FUNCTION FORMS

There are two principal simulation methods used to c
culate the ground state energies of quantum many-body
tems: Variational Monte Carlo~VMC! and diffusion Monte
Carlo ~DMC!. In VMC, one samples the square of the wa
function, and, in DMC, one uses a trial wave function a
the imaginary-time evolution to project onto the grou
state. VMC is potentially very powerful because one can
any wave function, as long as one can easily compute
values. One can add correlation directly to the wave fu
tion, leading to a very compact accurate wave function. T
resulting integrals are similar to that of the classical partit
function and therefore demand a simulation algorithm
evaluation. The disadvantage of the variational approac
that one needs to use the right functional space in orde
get satisfactory properties. Though DMC is much less dep
dent on details of the trial wave function than VMC, how
ever, lacking an exact fermion algorithm, the results still d
pend to some extent on the positions of the node~or phase!
of the trial wave function.

The most straightforward and rigorous approach to de
mine the trial function is to propose a definite analytic for
containing some parametersa. One then uses VMC to evalu
ate the variational energyEV(a), an upper bound to the ex
act energy as a function ofa. One can use various techniqu
to optimize the parameters to obtain the lowest energy,
lowest variance or some combination of the two. Variatio
optimization @18,10# has determined good backflow an
three-body trial functions for the electron gas in both tw
and three dimensions. The disadvantage of optimizatio
that beyond general trends, it is hard to extract analytic
havior because of the noisy behavior of the optimizat
method and the restriction to a limited functional form.
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Here we compare several different trial wave functions
two systems: the 3D electron gas and metallic hydrogen.
employ three estimators of the quality of the wave functio
the variational energyEv5^cĤc&, the variational variance
s25^cĤ2c&2Ev

2 , and the DMC~fixed-node! energy. The
first two properties are sensitive to all aspects of a wa
function; the variance is particularly sensitive to short-ran
structure since the energy fluctuations are larger. Howe
the DMC energy is determined only by the positions of t
trial function node, not by the ‘‘bosonic’’ part of the tria
function. The VMC/DMC calculations we performed we
standard ones@1#. All calculations are done with periodic
boundary conditions~PBC!, equivalent to theG point for a
band structure calculation in a cubic unit cell. Hence all tr
functions were real. Though twist-averaged boundary con
tions @32# are useful in reducing size effects, tests show
that the relative accuracy of various trial functions can
determined with PBC using real trial functions.

First, we discuss the results using backflow and thr
body wave functions on the 3D electron gas as shown
Table II. The results using analytic trial functions give resu
comparable to the numerically optimized backflow results
Kwon et al. @10#. We find that forr s,20 the analytic wave
function has a lower VMC energy than the numerically o
timized wave function. This is mainly due to the inclusion
the long-range part of the backflow potential. For all valu
of r s the analytic wave functions have a lower DMC energ
implying a more accurate nodal surface than obtained
numerical optimization. Forr s520 the numerically opti-
mized VMC energy is lower than that of the analytic wa

TABLE II. Energies and variances for the 3D electron gas w
N554 unpolarized electrons in Rydbergs/electron. SJ mean
Slater determinant of plane waves times an optimized Jastrow
tor. BF3-O are the result of the numerical backflow three-body
timization @10#. BF-A are the results using the RPA Jastrow, E
~A1! together with the analytical backflow formula, Eq.~A11!,
BF3-A with the additional asymmetric three-body wave function
Eqs.~40 and 41!.

r s Wave function Ev s2 EDMC

1 SJ 1.0669~6! 1.15~2! 1.0619~4!

BF3-O 1.0613~4! 0.028~1! 1.0601~2!

BF-A 1.0611~2! 0.029~1! 1.0597~1!

BF3-A 1.0603~2! 0.022~1!

5 SJ 20.15558(7) 0.0023~1! 20.15734(3)
BF3-O 20.15735(5) 0.00057~1! 20.15798(4)
BF-A 20.15762(1) 0.00061~1! 20.15810(1)
BF3-A 20.15773(1) 0.00050~1!

10 SJ 20.10745(2) 0.00039~.5! 20.10849(2)
BF3-O 20.10835(2) 0.00014~.5! 20.10882(2)
BF-A 20.10843(2) 0.00017~1! 20.10888(1)
BF3-A 20.10846(2) 0.00016~1!

20 SJ 20.06333(1) 0.000064~1! 20.06388(1)
BF3-O 20.06378(2) 0.000027~7! 20.06403(1)
BF-A 20.06372(2) 0.000045~2! 20.06408(1)
BF3-A 20.06358(1) 0.000056~1!
7-10
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function, indicating that at least the three-body part of
wave function becomes inaccurate at strong correlations

Now we consider the use of these same trial functions
a system composed of electrons and protons. To determ
the properties using the optimization method, we used
RPA form for both the ee and epu(r ). We used optimized
Gaussians for both the backflow and polarization terms:

h~r !5l exp@2~r 2r 0!2/w2#. ~58!

Even though the optimal functions may have a long-ran
tail, as shown earlier, the additional energy gained is sm
and we neglect the long-range terms in setting up the par
etrized trial functions. An additional Gaussian~with r 050 so
as not to change the cusp value! was added to the pair term
We did not include ee backflow or polarization terms in t
wave function. The resulting ten parameter wave funct
was then optimized to minimize a linear combination@33# of
its energy and variance:Ev1ts2/2 with typically t50.1.
Shown in Fig. 3 are the optimized backflow functions co
pared with the cumulant value, with the analytic form a
with the band structure determination. The magnitude
shape are similar, though differences are apparent.

We compare the results with three other wave functio
The simplest is the SJ-PW functions@2#, which do not con-
tain backflow, three-body terms and the orbitals are sim
plane waves. We also used optimized Slater-Jastrow fu
tions with orbitals from a LDA calculation@3#. Finally
shown are various analytic backflow calculations: one c
tains only ep backflow~and three body!, the others have ee
backflow ~three body! included in addition.

Shown in Table III are both VMC and DMC calculation
of various wave functions for metallic bcc hydrogen atr s
51.31, a density very close to the molecular-metallic tran
tion. While the detailed results depend on the number
particles, in general we find that the SJ-PW function is
error within VMC by about 15 mH/atom while the BF is i
error by about 4 mH/atom and the LDA trial function b
about 2 mH/atom. Within DMC the SJ-PW is in error b
6mH/atom and the BF is as accurate at the LDA trial fun
tion within the statistical error. This analysis of errors is do
with the assumption that the LDA-DMC energy is exact.
another indication of the quality, the VMC wave functio
variance is roughly a factor of 3 smaller with the BF wa
function than with the SJ-PW wave function.

We see that forN516 the DMC backflow results are eve
lower than the LDA function. One reason for this could
that N516 has a degenerate ground state for a single S
determinant; many-body effects break the degeneracy. It
be that the current simulations, though similar to those
Natoli, broke the degeneracy in a more favorable way a
thus have a lower energy. TheN554 system has a nonde
generate ground state at the mean field level, a closed s
so the results may be more typical. Finally degeneracy
fects are probably less important atN5128 sinceN is larger.

We have tested the relative importance of including
backflow in the case of metallic hydrogen. Using
backflow-three-body only, the analytical wave functions g
considerably higher energies compared to the numeric
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optimized ones. Including ee backflow in the analytic
forms, they become comparable. One should note that
analytical approaches derive ee and ep backflows at the s
order of approximation; dropping one of them alone is n
justified and might explain the importance of including
and ep backflows in the analytical functions. The inclusion
three-body terms does not noticeably affect the energ
This is similar to the results for the electron gas at com
rable densities@10#. Since the density is close to the trans
tion from metallic to molecular hydrogen we tried to im
prove our wave function by considering the effects of
simple electron-proton bound state on Jastrow and back
in our analytical formulas~see the Appendix! and found sig-
nificantly lower energies within VMC.

Note that when ee backflow is included, it becomes n
essary to move all electrons together, and for reasonable
ceptance ratios one must choose an increasingly smaller
step as the system size increases. However, the more a
rate nodal surface gives both a quantitative improvemen
properties and qualitative changes in some properties suc
Fermi liquid parameters@31#.

TABLE III. Energies for bcc hydrogen atr s51.31. SJ-PW
means a Slater determinant of plane waves times an optimized
strow factor. LDA means LDA orbitals times an optimized on
body factor and Jastrow factor@3#, BF3-O ep means optimized e
backflow, ep polarization, and Jastrow. Energies are given in
trees per atom. Periodic boundary conditions (G point! and Ewald
sums were used.s is the variance per electron. BF3-A ep are t
analytical wave functions using ep backflow three-body on
whereas BF-A ee1ep are results with ee and ep backflow; BF3
ee1ep include also ee and ep three-body and backflow, BF-A
1ep1b uses the same wave functions of BF-A ee1ep but the
electron-proton Jastrow and backflow is improved by taking i
account the effects of a bound state.

N Wave function Ev s2 EDMC

16 SJ-PW 20.4754(2) 0.0773~25! 20.4857(1)
LDA 20.4870(10) 20.4890(5)

BF3-O ep 20.4857(1) 0.0317~5! 20.4900(1)
BF3-A ep 20.4798(1) 0.0513~2!

BF-A ee1ep 20.4850(1) 0.0232~1! 20.4905(1)
BF3-A ee1ep 20.4850(1) 0.0227~1!

BF-A ee1ep1b 20.4878(1) 0.0181~4!

54 SJ-PW 20.5241(3) 0.0642~9! 20.5329(1)
LDA 20.5365(5) 20.5390(5)

BF3-O ep 20.5331(6) 0.033~1! 20.5381(1)
BF3-A ep 20.5261(1) 0.0516~3!

BF-A ee1ep 20.5323(1) 0.0222~2! 20.5382(1)
BF3-A ee1ep 20.5325(1) 0.0214~1!

BF-A ee1ep1b 20.5353(2) 0.0178~2!

128 SJ-PW 20.4818(2) 0.0656~23! 20.4900(2)
LDA 20.4962(2) 20.4978(2)

BF3-O ep 20.4934(2) 0.035~2! 20.4958(3)
BF3-A ep 20.4846(3) 0.059~1!

BF-A ee1ep 20.4928(2) 0.030~1! 20.4978(4)
BF3-A ee1ep 20.4926(2) 0.029~1!

BF-A ee1ep1b 20.4947(2) 0.023~1!
7-11
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We also used the CEIMC@5# method to generate a collec
tion of proton positions appropriate to liquid metallic hydr
gen at 5000 K, far above the melting temperature of
lattice. Using these configurations we tested the accurac
the same trial functions described above. See Table IV.
values marked BF3-O are obtained minimizing local ene
and variance for 1000 different equilibrium configuration
We compared to the other ways of determining the backfl
functions, either the analytic formulas~see the Appendix! or
optimized on the lattice. While the optimized BF3 functio
have a slightly lower energy in some cases, this does
compensate for the difficulty and reliability of performin
the optimization. We find that the BF3 wave functions a
about 20 mH/atom lower in energy than from the SJ-PW
the VMC level, and have a lower variance. This comparis
shows that disorder weakly affects the determined functi
at least in this experiment. This supports our belief that
BF3 wave function is ‘‘transferable’’ to a variety of proton
configurations. In addition, we expect the backflow wa
function to be more effective in the disordered system, si
the energy degeneracies caused by crystal symmetry
perfect lattice are not present. Comparisons using optim
LDA functions to support this hypothesis will be reported
a future publication.

VI. CONCLUSION

What we have shown in this paper is that ideas fr
perturbation theory can be used to generate an explicit
wave function beyond the pair level. This gives us both
insight into the form of the many-body wave function and
more efficient quantum Monte Carlo simulation for diso
dered systems. This approach has also given intuition on
effect of an external potential on the wave function, even
a single electron. We have shown that one can approxim
the band wave function~a 3d table of numbers for each
Bloch wave!, with three 1D functions (u,w, andy) valid for
all Bloch waves achieving reasonable accuracy. It should
recalled that for the electron-proton system, there will
these three functions for the ee interaction and three fu
tions for the ep interaction. We have found analytical rep
sentations of these functions accurate throughout most o

TABLE IV. Energy and variance of liquid metallic hydrogen
r s51.31, andN516. The notation of the trial function is describe
in Table II. The entries marked~bcc! are performed with the value
of the parameters optimized on the perfect bcc lattice. The o
entries are optimized over 1000 independent protonic config
tions taken at thermal equilibrium at 5000 K. All results are us
VMC.

Wave function Ev s2

SJ-PW 20.4225(8) 0.0812~4!

BF3-O-bcc ep 20.4418(5) 0.0447~7!

BF3-O-liq ep 20.4433(8) 0.0710~10!

BF3-O-liq ee1ep 20.4462(8) 0.0482~8!

BF3-A ee1ep 20.4430(4) 0.0548~2!

BF3-A ee1ep1b 20.4464(6) 0.052~2!
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phase diagram of the electron gas and promising for meta
hydrogen.

An important consideration in Monte Carlo is comput
tional efficiency. For electron-electron backflow, the co
runs slower due to having to move all the particles togeth
For electron-proton backflow that is not the case. You c
still move electrons one at a time since all the changes in
Slater matrix are confined to a single column; each s
matrix value is given by a term of the same form as a cl
sical force, allowing it to be quickly computed once the
distance has been computed. Expansions of single-body
bitals in a plane wave basis can be quite time consum
especially when pseudopotentials are not used.

But the most important advantage of the backflow wa
functions is that the form can be easily extended to pu
effects of electron-electron correlation on the nodes. The o
standing problem in the simulation of quantum systems is
‘‘fermion sign problem.’’ If the nodal surfaces are accurate
approximated, then the ‘‘fixed-node’’ method will give acc
rate results. The present work establishes analytic prope
of the backflow functions and thus leads to importa
progress in understanding nodal surfaces. In particular,
effect of long-range interactions resulting in perturbations
the nodal surfaces is important to establish. Strong sh
range effects can be captured either by energy minimiza
or by the nodal release algorithm, which can solve for
exact wave function for relatively short projection times
for small numbers of fermions@34#. Fixing the relationship
between the long-wavelength collective coordinates and
nodal surfaces could be crucial in obtaining accurate sim
tions for fermion systems.

In this paper, we discussed the use of backflow functio
for metallic hydrogen, using plane waves as the refere
state. Generalization of this form of trial function to molec
lar hydrogen, an insulator, is straightforward. Let us take
the reference stateM (1)5( i t i(r i)1U(R) a Hartree-Jastrow
trial function; U(R) is a pair term including both ee and e
terms andt i(r i) is a real function localized on thei th mo-
lecular bond, e.g.,t i(r )52 ln@fi(r )# wheref i(r ) is a non-
orthogonal Wannier function. Ceperley and Alder@2# used a
spherical Gaussian centered on the bond but a more ge
function can be used. LetZ i be the bond center, then we ca
expandt i(r i)5(r i2Z i)Ā(r i2Z i). Applying the GFK itera-
tion, Eq. ~8!, the bond center becomes displaced by
amountZ i→Z i12lŠ^“ iU&‹1. The bond center is offset by
‘‘backflow forces’’ coming from the other charges. The bac
flow displacement is similar to that for metallic hydroge
Eq. ~13!, but because the averaging has a different drift,
optimal backflow potentialY(R) will differ. In addition, U,
Ā are renormalized and a three-body/polarization termW(R)
is generated. Preliminary calculations using these ideas
encouraging.

Backflow ideas are also useful at finite temperature.
that case we need to know how density matrices will evo
going from high temperature to low temperature@35#. One
knows how to put in backflow at high temperature. The ch
lenge is to smoothly interpolate to zero temperature sinc
is clear that the backflow potential must be a smooth fu

er
a-
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BACKFLOW CORRELATIONS FOR THE ELECTRON GAS . . . PHYSICAL REVIEW E 68, 046707 ~2003!
tion of temperature. In the variational density matrix meth
@36# one uses a Hartree-Fock approach with a Gaussian b
to determine the evolution of the nodal surface of the ma
body density matrix. The various approaches we have
scribed here, in particular the Bohm-Pines method, will
useful in understanding the temperature dependence.

Another important problem is to generalize these meth
to treat electrons with core states. The formalism should g
erate good trial functions in the valence region and can
used with either all-electron methods or pseudopotential
that region. We hope that with some modification the pro
dures we have discussed will be useful in the core region
well.
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APPENDIX: ANALYTIC EXPRESSIONS OF THE TRIAL
WAVE FUNCTION

In this section we summarize the analytic two-body, ba
flow, and polarization functions which describe the tr
functions. We start from the pair-product~Slater-Jastrow!
wave function based on the RPA, using

2nũq
ee5211S 11

2nṽq

«q
D 1/2

~A1!

and

2nũq
ep52

2nṽq

«q~112nṽq /«q!1/2
, ~A2!

where«q5\2q2/2m[lq2. Herem is the electron mass an
n is the electronic density. Using a trial function with ee a
ep Jastrow factors corresponds to the following exten
Hamiltonian, Eq.~44!, with

Mq
25~ ũq

ee!22n«q , ~A3!

MqPq5ũq
epũq

ee2n«q . ~A4!

Applying the unitary transformation~51! to the wave func-
tion, it generates the backflow potentials,

yq
ee, int5

2lMq
2

vp~q!@vp~0!1«q#
, ~A5!
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yq
ep, int5

2lMqPq

vp~q!@vp~0!1«q#
, ~A6!

where we usedvp
2(q)58ple2n12.4kF

2l«q1«q
2 for the

plasma frequencies andkF is the Fermi vector. The screene
interaction between electrons, Eq.~45!, and between elec
trons and protons, Eq.~48!, can be treated by perturbatio
theory. Summing up the particle-hole~bubble! diagrams, us-
ing only the zeroth-order plane waves, leads to coefficie
ak1 ,k2 ,q for the electron gas, as given by Eq.~38!, but with
an effective interaction and dielectric constant:

ṽeff
ee~q!5 ṽq2Mq

2 , eeff~q,v!512 ṽeff
ee~q!D~q,v!,

~A7!

whereD(q,v) is the real part of the Lindhard function. A
the pair-product form already accounts for plasmons, we
not consider any additional plasmon contributions to E
~38!. Expanding Eq.~38! aroundki50, we obtain

yq
ee,sr5

@S~q!#2

2q2

ṽeff
ee~q!

«qeeff~q,«q!
. ~A8!

To obtain this formula we have further approximated the s
over occupied~unoccupied! states by@S(q)#2/4, whereS(q)
is the ideal gas structure factor,

S~q!5H 1

2 F 3q

2kF
2S q

2kF
D 3G , q,2kF

1, q>2kF .

~A9!

The screened electron-proton interaction gives a similar t

yq
ep,sr5

2

«qq2

ṽeff
ep~q!

eeff~q,0!
~A10!

with the screened electron-proton interactionṽe f f
ep (k)5

2( ṽk2MkPk).
Adding these two contributions, the total backflow is

yq
ee5yq

ee, int1yq
ee,sr , ~A11!

yq
ep5yq

ep, int1yq
ep,sr . ~A12!

We also performed calculations with an additional ee Jast
function ; ṽeff

ep(q)/@«qeeff(q,0)# but this form did not lower
the energy. Assuming that this form disturbs the already c
rect limiting behavior of the Jastrow partuq

ee anduq
ep for q

→0 andq→`, we took only the portion around the loga
rithmic singularity at 2kF , by using the following additional
Jastrow factor:

ũq
ee,add5

@S~q!#2

4«q
ṽeff

ee~q!H 1

eeff~q,«q!
2

1

eeff~0,0!J ,

~A13!

ũq
ep,add5

1

«q
ṽeff

ep~q!H 1

eeff~q,0!
2

1

eeff~0,0!J . ~A14!
7-13



w

W
r-

t.
to

tro
v
p

s
e

-
te

m
-

g

s.
th
m

ge
en
alu-
ated
nu-
g

ed

ve

op-

e
is is

-

ef.

HOLZMANN et al. PHYSICAL REVIEW E 68, 046707 ~2003!
We usedũq
ep1ũq

ep,add for the total electron-proton Jastro

potential, but onlyũq
ee, since the additional termũq

ee,add did
not improve the variational energies of the electron gas.
used the unsymmetrical form of the polarization with diffe
ent left and right components given by Eqs.~40! and ~41!:

wu
ep~r !5uep,add~r !, wy

ep~r !5yep~r !. ~A15!

Analogous forms were used for the electron-electron par
For the case of metallic hydrogen we tried to take in

account the effects of a possible bound state on the elec
proton pair and backflow potential. The single-electron wa
function fb considering only one bound state can be a
proximately written by

fb.
A

AN
(

i
wb~ ur2r i u!, ~A16!

wherer i is the position of thei th proton and the sum extend
over allN protons. As single-particle orbital we will take th
hydrogen ground state,wb5(pab

3)21/2exp(2r/ab), with en-
ergy eb51/2mab

2 ; A<1 is a normalization taking into ac
count the nonzero overlap between orbitals on different si
Using Eq.~28! we obtain for the scattering amplitude

f ~eb ,p!52(
i

Ae2 ip•r i

ANpa0
3

4pe2

p21~a0
211kTF!2

, ~A17!

where we have taken a screened Coulomb interactionv(r )
52e2e2kTFr /r with the Thomas-Fermi wave vectorkTF

2

52kFe2/pl, and we have neglected overlap effects fro
different sites. From Eq.~27! we can finally derive the cor
rections to the pair potential,

uq
ep,b52

A

Anpab
3@11~q/2kTF!2#

3
4pe2

@q21~ab
211kTF!2#@eb1eq#

~A18!

and

yq
ep,b52

8pe2A

Anpab
3@11~q/2kTF!2#

3S 1

@q21~ab
211kTF!2#2@eb1eq#

1
l

@q21~ab
211kTF!2#@eb1eq#2D ~A19!

for the backflow potential. We have cut off the short-ran
part of the corrections by multiplying with @1
1(q/2kTF)2#21 in order not to destroy the cusp condition
Since we expect a higher energy for the ground state of
screened Coulomb interaction than for the pure Coulo
potential, we usedab'2a0 andA'1 in the numerical cal-
culations.
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All potentials were split into a short-range and long-ran
part @37# in such a way as optimize the accuracy for a giv
r-space and k-space cutoff. The short-range function is ev
ated in real space and the long-range part is then calcul
by summing over Fourier components. Figure 5 shows
merical values ofh(r ) for the 3D electron gas. Comparin
with the same figure of Kwonet al. where these functions
were numerically optimized, we see that the short-rang
functions are very similar forr s,10 but different at larger
r s . Figure 6 shows the three-body contribution to the wa
function. It is a rapidly increasing function ofr s and is some-
what narrower and more structured than the numerically
timized form.

FIG. 6. The three-body contribution to the logarithm of th
wave function due to three electrons in the 3D electron gas. Th
just the short-range parts ofw(r ) for N554. The solid line, for
r s51, is close to zero~maximum magnitude of 331024). The
dotted line and dashed lines are forr s55,10. Compare to the opti
mized forms in Fig. 1 in@10#.

FIG. 5. The change in the quasiparticle coordinaterh(r ) ~ana-
lytic backflow! caused by an electron a distancer away in the 3D
electron gas. Graphed is only the short-range part ofh with N
554. The four figures are forr s51,5,10,20 from the bottom to the
top of the figure. Compare to the optimized forms in Fig. 2 in R
@10#.
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